
Introduction to CSS

1

Introduction to CSS
Luka Abrus

Technology Specialist, Microsoft Croatia

CSS, or Cascading Style Sheets, have brought a completely new view on Web page

design and development. Using CSS you can completely separate text displayed on a

Web page (which is created in HTML code) and information that describes how to display

and present that text (which is defined using CSS).

CSS has been introduced to solve problems and help you save time, while giving you

more possibilities in designing the way your Web pages look. Although this might be the

first time you’ve heard about CSS, you've already seen it in action many times before.

Here's one typical example: some Web pages highlight their links in a specific way. They

are in a different color than the rest of the text, but if you move the mouse over them,

they change color or become underlined. That has been done without touching HTML

code, but rather with using style definitions. We'll cover such an example later in this

guide.

To be able to follow this guide, you need to have some prior knowledge of HTML. We will

use HTML code as the basis and then build on it showing you what other capabilities you

have when displaying and presenting page content.

What is CSS?

Since the beginning of HTML usage for web page creation, people have realized the need

to separate the way the page looks and the actual content it displays. Even the first

versions of HTML have supported different ways to present text using FONT, B (bold) or

I (italic) tags. Those HTML elements still exist today, but their capabilities are far below

what Web pages should provide.

As we've already said, CSS enables you to separate the layout of the Web page from its

content. This is important because you may want the content of your web page to

change frequently (for example, a current events page) but not the design/layout, or

vice versa. It is a standard of the World Wide Web Consortium (W3C), which is an

international Web standards consortium.

Practically, all the style and layout guidelines for a website are kept in CSS files that are

separate from the HTML files which contain the data, text and content for a website.

Simply put, when talking about displaying Web pages in the browser, HTML answers the

question "What?", while CSS answers "How?".

When using CSS, you are defining how to display each element of the page. You can, for

example, say to show all text in DIV elements in blue color, to have all links italic and

bold, etc. With CSS you can also define classes, which tell the browser how to display all

elements of that class.

Maybe you're asking yourself, why bother with CSS? Isn't it much simpler and faster to

define everything inside the HTML page? Using HTML tags and attributes, you can

modify the style of each element on your page.

http://www.w3.org/

Introduction to CSS

2

But what if you have a Web site with a larger number of pages, let's say 50? Imagine

the process of setting the style for each element on your 50 pages. And then, if later on

down the road you want to change the font style, you’ll have to manually go through

each file and change all the HTML elements. You can count on a very long, boring and

tiring process!

With CSS you can put all the information about displaying HTML elements in a separate

page. Then you can simply connect this CSS file with all pages of your Web site, and

voilà – all the pages will follow the same guidelines. Change the CSS file, and you have

indirectly changed all pages of your Web site. In addition, you get much greater design

capabilities with CSS, as we will show in this guide.

How do I use CSS?

Let's get started with using style sheets. CSS data is actually plain text written in a

specific way. Let's take a look at the contents of a sample CSS file:

body

{

 font-family: Verdana;

 font-size: 9pt;

 text-align: right;

}

div

{

 font-family: Georgia;

}

.important

{

 background-color: #ffffde;

 border: thin black ridge;

 font-family: Franklin Gothic Book;

}

It is actually completely readable – this style sheet defines that all content within the

HTML BODY element will use font Verdana with size of 9 points and will align it to the

right. But, if there's a DIV element, the text within that will be written in font Georgia.

We're also using a class named "important" (classes use "." notation, which we will

cover later on). All elements of this class will have a set background color, a border and

will use Franklin Gothic Book font. As you see, style definitions for a certain element or

class are written inside curly braces (“{ }”) and each line ends with a semicolon “;”.

Now is the perfect time to explain the scoping of styles. All CSS definitions are

inheritable – if you define a style for BODY element, it will be applied to all of its

children, like P, DIV, or SPAN elements. But, if you define a style for DIV element, it

will override all styles from its parent. So, in this case, the DIV element text would use

Introduction to CSS

3

font Georgia size 9 points and would be aligned to the right. As you see, DIV style

definition for the font family has overridden BODY style definitions.

This goes on – if you have a DIV element which is also of class "important", the class

definition will override DIV style definitions. In this case, such DIV element would have

a background color set, a border, it would use font Franklin Gothic Book size 9 points

and be aligned to the right.

Here are the elements that would be affected by the sample CSS file.

<html>

...

<body>

Body text goes here. Lorem ipsum dolor sit amet.

<div>Div text goes here. This text is written in a different font.</div>

Body text continued.

<div class="important">This is very important!</div>

Body text continued. Lorem ipsum dolor sit amet, consectetur adipisicing

elit.

</body>

</html>

And, of course, the browser would show this content as follows.

Let's go to the next step – how to connect a CSS file with an HTML page. Go ahead and

open Microsoft Visual Web Developer 2005 Express Edition (you can download and

install it from http://msdn.com/express/vwd). Select File | New File and choose “Style

Sheet” from among the Visual Studio installed templates. Copy and paste the CSS

sample above into this file and save this file as “style.css” into a folder on your

http://msdn.com/express/vwd

Introduction to CSS

4

computer. Now select File | New File and choose “HTML Page”. Also save this HTML

page into the same folder on your computer. Insert the following code into the HTML

page.

<link rel="STYLESHEET" type="text/css" href="style.css" />

This code should be put within the HTML page header, within HEAD element. As you

see, href attribute defines which CSS file to use. Put this LINK element within all HTML

pages you wish to apply styles to and you're done!

CSS data doesn't necessarily have to be in a separate file. You can define CSS styles

inside of a HTML page. In this case, all CSS definitions have to be inside a STYLE

element. This approach can be used to define the looks of elements that are specific to a

certain page and will not be reused by other pages. Take a look at how that HTML page

might look:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

 <head>

 <title>My title</title>

 <style type="text/css">

 body

 {

 font-family: Verdana;

 font-size: 9pt;

 text-align: right;

 }

 div

 {

 font-family: Georgia;

 }

 .important

 {

 background-color: #ffffde;

Introduction to CSS

5

 border: thin black ridge;

 font-family: Franklin Gothic Book;

 }

 </style>

 </head>

 <body>

 <div class="important">My content</div>

 </body>

</html>

Notice that in this example you can see how to define an element of a specific class –

just add class attribute and set its value. All classes within CSS style definitions are

prefixed with a dot (".").

The third way to define a CSS style, in addition to the previously explained methods of a

separate CSS file, and the STYLE element within the HTML page header, is inside of a

specific HTML element. To do this, you need to use the style attribute. Take a look at the

following example:

My text

As you're probably guessing, all the text inside of this SPAN element will be displayed

using 12 point Tahoma font. And remember – when applying styles directly to elements,

as in this last example, these style definitions will override all element definitions and

class definitions previously set in a separate CSS file or inside of HTML page header

STYLE element.

CSS style definition syntax

To be able to write CSS files and definitions correctly, you need to remember few simple

rules. Although CSS syntax is rather logical and easy to learn, there are 6 basic things

you need to know. First, take a look at the structure of a style definition.

And here are 6 rules of style definitions:

1. Every CSS definition has to have a selector and a declaration. The declaration

follows the selector and uses curly braces.

2. The declaration consists of one or more properties separated with a semicolon.

Introduction to CSS

6

3. Every property has a name, colon and a value.

4. A property can have multiple values separated with a comma (e.g. "Verdana,

Arial, Franklin Gothic Book").

5. Along with a value, can also be a unit of measure (e.g. "9pt", where "pt" stands

for points). No space is allowed between the value and the unit.

6. When writing CSS code, you can use whitespaces as needed – new lines, spaces,

whatever makes your code more readable.

Quiz 1

Question 1.1: What three options do you have if you want your Web page use CSS?

How can you use CSS?

Answer 1.1:

 You can put your CSS code in a separate file and link it to a Web page using the

LINK element.

 You can put your CSS code inside a STYLE element in the header of the HMTL

page.

 Or you can put your CSS code inside of style property or attribute of the specific

HTML element you wish to apply the style to.

Question 1.2: What is wrong with the following CSS definition?

body (color = "black";)

Answer 1.2: Usage of whitespaces is allowed, but the problem is in using parentheses

(instead of curly braces) and the equal sign (instead of a colon). Correct code should

look like this:

body { color: "black"; }

Question 1.3: Which CSS code would be applied to an element, the one defined within

the STYLE element of the page or the one defined within the style property of the

element? Take the following code as an example. What would be the size of the font in

the DIV element?

<html>

 <head>

 <title>My page</title>

 <style type="text/css">

 div

 {

 font-family: Verdana;

Introduction to CSS

7

 font-size: 9pt;

 }

 </style>

 </head>

 <body>

 <div style="font-weight: bold; font-size: 12pt;">My text</div>

 </body>

</html>

Answer 1.3: Both would be applied, but the one defined within the style property would

be completely applied and it might override the code defined within STYLE element of

the page. DIV element would be styled as if it had the following style (the font-size

would be overridden by value in the style property):

font-family: Verdana; font-weight: bold; font-size: 12pt;

Selecting elements to describe

Let's get started with real CSS examples. When writing CSS style definitions, the first

thing you need to do is to select elements to apply styles to. If you are writing CSS code

inside the style attribute of an element, you don't have to bother – that style will be

applied to that element (and its children) only.

But when using a separate CSS file, or internal style elements inside an HTML document,

selecting the elements is crucial. You can select any HTML element from the page to

apply a style to, but the capabilities of CSS go far beyond just the elements on the page.

Basic HTML elements

The simplest way to select which elements to apply styles to, is to specify the HTML

elements themselves. For example, selector b would define the style for all B elements

on the page, and selector p would define the style for all P elements on the page. To

write a HTML element selector, just write the tag name without "<" and ">" signs. The

CSS code below defines styles for H1 and DIV HTML elements.

h1 { font-size: 16pt; font-weight: bold; }

div { border: solid 1px black; }

Remember: when you define a style of HTML element, it will be applied to all such

elements on the page.

Besides this simple selecting of HTML elements, you can use another technique –

contextual selectors. Contextual selectors, as their name implies, select elements based

on their context. They can be applied to all types of selectors - HTML elements, classes

and all others you'll learn as you go forward with this guide.

So if you want to apply styles to all B elements that are part of DIV elements, you

would write:

Introduction to CSS

8

div b { font-family: Times New Roman; }

This style would be applied to every B element that is a child of a DIV element, for

example:

<div>This is my text Times New Roman font This is my text</div>

With contextual selectors you can go as deep as you want. You can write for example div

b i u { … }, which would define the style for all U elements which are inside I elements

which are inside B elements which are inside DIV elements. You get the picture!

Let's look at one practical example. As you know, all pictures that are also links by

default have a border. You can change that by adding the border="0" attribute to all

IMG elements, or you can use a contextual selector. You just need to select all pictures

(IMG elements) that are part of links (A elements).

a img { border: none; }

There is one more situation we need to explain which might make your CSS

development a bit easier. What if you want to apply the same style both to all DIV and

all SPAN elements? You could write the same style twice, or only once using the

following syntax:

div, span { font-family: Segoe UI, Verdana; }

Just use a comma to separate selectors with the same style. If you don't use a comma,

this style would be applied to all SPAN elements that are within DIV elements

(contextual selector). The comma means that the style will be applied both to SPAN

and DIV elements. Separating selectors with a comma can be used for any selector,

whether it is a class, ID selector or a pseudo class, as you will soon learn.

CSS classes

Controlling the way all HTML elements look can be useful, but also limiting. It's excellent

to be able to change every paragraph, table cell or image with one line of CSS code, but

sometimes you'll want to change only few paragraphs or images, not all of them. You

can add CSS code through the style attribute of each element, but for more elements

that method gets too complicated.

The answer is, as you've seen before, to use classes. There are two types of classes –

generic classes that can be applied to any element, and classes that can be applied only

to a certain type of HTML element.

Let's start with generic classes. Their selector starts with a dot ("."), which states that it

is a class. You can name it anything you want.

.important { background-color: #FFFFDE; }

.myclass1 { font-family: Verdana; }

.boooring { color: Gray; }

To apply a class to a certain HTML element, use its class attribute where you state the

class name without the dot.

<div class="myclass1">sdfs</div>

Introduction to CSS

9

<i class="boooring">italic</i>

In this example, the contents of DIV element would use Verdana font and the contents

of I element would be written in gray color.

You can also use classes which can be applied only to certain HTML elements. Selectors

of these classes start with the HTML element name, followed with the dot and the class

name.

div.big { font-weight: bold; font-size: 16pt; }

These classes can be applied only to a specified element, in this case a DIV element.

<div class="big">Big bold text.</div>

Normal text - class not applied.

So now you know how to apply styles to group of elements, but how do you apply a

style only to one element on the page? You can write everything in its style attribute,

but there is another way – using ID selectors. The syntax of ID selectors is very similar

to classes, but instead of a dot you must use a hash sign ("#").

#title { font-size: 22pt; }

This style can be applied only to the element which has ID "title". As you know, ID's

uniquely define elements on a page and are specified in the ID attribute of an HTML

element.

<div id="title">My Title</div>

The ID selector name must start with a letter, and can only use letters and numbers. For

example, "#3rdTitle", "#My_Title" and "#Important!" isn't correct.

Links

The most common usage of CSS is to define how hyperlinks look. With the selectors

you've seen so far you can only define the general design of links. But links can have

special states. You can apply different styles to them, depending on the position of

user's mouse and whether they have been clicked. For example, they can be underlined

when the mouse is over them, gray when the user has already visited them or glowing

in yellow when user clicks them.

This effect is accomplished with pseudo classes. Here are the four states that links can

be in:

Pseudo class Link state

a:link Normal link

a:visited Already visited link

a:hover Mouse hovers the link

a:active User is clicking on the link

With these pseudo classes you can create link tricks that you've already seen on

different Web sites. Look at the example below which defines the different styles for

each link state.

Introduction to CSS

10

a:link { color: #123456; text-decoration: none; font-family: Verdana; }

a:visited { color: #123456; text-decoration: none; font-family: Verdana; }

a:hover { color: blue; text-decoration: underline; font-family: Verdana; }

a:active { color: blue; text-decoration: underline; font-family: Verdana;}

Take a look at the picture – which one do you like better, the default link colors (left) or

the ones you specify (right)?

As you see, a difference occurs when user moves the mouse over the link – it changes

color. This is defined with a:hover selector. Also, the link has the same color whether it

has already been visited or not, which makes it look much more uniform. Now it's up to

you to implement this CSS code and adjust it to fit your Web site's colors and fonts!

When writing HTML code for the links, you don't have to write any special code, as the

previous CSS example will be applied to all links in the document.

My new link

Pseudo classes can be combined with other selectors, too. For example, if you want to

have different styles of links, one for the left menu, and a second style for the right

menu on the page, you can use two classes (.right and .left) with pseudo classes.

a.left:link { font-family: Verdana; ... }

a.left:hover { ... }

...

So now you have a special class of links called "left" to which you can apply different

styles using pseudo classes. You can read the code above as – for every link which is of

class "left" and in a specific state, apply this style. If you want to apply this style to a

link, don't forget to define its class:

My new link

With selectors you've just learned that you can accomplish almost anything. There are

actually few more types of selectors and ways to select elements on the page, but with

the ones you've just learned, you're good to go. The next step is something we've

already been using, but haven't thoroughly explained – CSS properties.

Quiz 2

Question 2.1: If you want all links and DIV elements use Verdana font, how would you

write the shortest CSS code?

Answer 2.1: Use selectors separated with comma.

a, div { font-family: Verdana; }

Introduction to CSS

11

Question 2.2: How would you write CSS code to make all elements of class "title" that

are part of a DIV element use Verdana font? For example:

<div>Normal text. Verdana text. Normal text. <b

class="title">Verdana text.</div>

Answer 2.2: You should write a contextual selector that selects all elements of class

"title" within DIV elements.

div .title { font-family: Verdana; }

Question 2.3: How would you make the text of only the following HTML element

underlined without changing the HTML code?

<div class="content" id="titleContent">My content.</div>

Answer 2.3: Add an ID selector:

#titleContent { text-decoration: underline; }

Properties of elements

Now that you've learned how to use CSS and how to select elements to apply styles to,

you need to learn what styles you can actually apply to elements. The purpose of this

part of the guide isn't to teach you about all of the properties that exist, but rather to

give you an overview of the possibilities that lie before you.

Text properties

Text is the most important part of every web page. The content of the page is the

reason why visitors come back, and information sharing is why the internet is so

powerful. So it's obvious that you'll have to put a lot into getting good content for your

site, and then presenting it in a clear and readable way.

Let's start with the simplest text attribute – its color. For color definitions, the rules are

the same as in HTML. Colors can be defined in hexadecimal or by using color names.

div { color: black; }

p { color: #00003D; }

We won't list all color names here, but you can't go wrong – if you know the name of the

color (like "black", "white", "red", "blue", "maroon" or "aqua"), try it out. Visual Web

Developer Express will also help you by popping up a context menu of options as you

type:

Introduction to CSS

12

The next text attribute is its size. Remember one important thing – always specify the

unit of measure, as specifying only the size value doesn't mean anything. In the

following table you can see a list of available units and their abbreviations which you'll

use in CSS.

Unit Abbreviation Description

em em Computed font size

ex ex Height of lowercase "x"

pica pc Picas (1 pica = 12 points)

point pt Points (1 point = 1/72 inches)

pixel px Pixels on the screen

millimeter mm Millimeters.

centimeter cm Centimeters

inch in Inches (1 inch = 2,54 centimeters)

When specifying text size, use the font-size attribute, like in the following examples:

div { font-size: 12pt; }

span { font-size: 24px; }

The usual text size on Web pages is, when specified in points, somewhere between 9

and 12. That depends on you and the way you want your page to look. But if you have

larger blocks of text, don't use a too small a font size, as it will be too difficult to read.

After specifying the text size and color, define the font in which it will be written. The

font directly influences the readability of the text. The font type easiest to read is serif

type. Serif fonts have ornaments and finishing strokes on each character, which makes

letters more distinguished. For example, some serif fonts are Times New Roman,

Garamond or Georgia. On the other hand, there are also sans-serif fonts, without

ornaments and with plain endings. Examples are Arial, Verdana, Tahoma and Trebuchet.

Introduction to CSS

13

Usually the sans-serif fonts are much nicer to see and look better on the screen, but it is

suggested that, if you have larger blocks of text, you write them in serif fonts, as they

are much easier to read.

Also, be careful when selecting unusual fonts to display text. Fonts are installed on the

client computer (check Control Panel – Fonts to see which fonts you have installed), and

if you are using a non typical font, the visitor of the page might not have that font

installed. It all depends on the operating system of the visitor, so be sure to use only the

standard, most common fonts, like Arial, Verdana, Times New Roman, etc.

Font is defined with the font-family attribute which can have more values separated with

a comma. This is useful if you want to use a font that might not be available to all users.

For example, font Segoe UI is installed with Windows Vista, but it isn't available to

Windows XP users. So you could write the following CSS code:

div { font-family: Segoe UI, Arial; }

All the text within the DIV element would be written in Segoe UI font for Windows Vista

users, but in Arial for all visitors not using Windows Vista. The fonts are checked in the

order they are specified and the text will be displayed with first available font. If no

specified font is available, the text will be displayed using the default font (most often

Times New Roman).

You can specify additional attributes which can make the text underlined, bold or italic.

To underline a text, use the text-decoration attribute which can, for example, have

values "none", "underline" or "line-through". If you want to make text bold, use the

font-weight attribute which can have values like "normal" or "bold". To make text italic,

use the font-style attribute and its "italic" value.

div { text-decoration: underline; font-style: italic; font-weight: bold; }

And finally, if you want to align text, use its text-align attribute. Text can be aligned to

the left ("left"), right ("right"), it can be centered ("center") or justified ("justify").

div { text-align: center; }

Now you've learned the typical text attributes, you can combine them to make your text

more readable. Just specify all attributes you need:

div { font-family: Segoe UI, Verdana; font-size: 14pt; color: Black; text-

decoration: underline; font-style: italic; font-weight: bold; text-align:

center; }

As you might have noticed, this is just an example of all the properties. You wouldn't

want your text to be italic, bold and underlined at the same time, would you?!

Backgrounds

When using plain HTML without CSS, you can define the background only for the whole

document using the BODY element. But with CSS you can do it for any HTML element.

The property you need to set is background-color. You can set its value similar to the

color attribute, or to colors in HTML.

Introduction to CSS

14

However, you aren't limited only to colors. You can even set an image to the background

of any element with the background-image property. Now, before we move forward,

let's explain why the combination of these two properties is important.

For example, if you put a dark image in the background of a DIV element, you will

probably want the font color to be white. But in the case of document still loading or if

background image is inaccessible (someone deleted it from the server?), there will be no

background, only the text written in white (same as the default background color of the

HTML page), which makes it completely unreadable. So the solution is – always define a

similar background color and background image which will be displayed behind the text

making it easier to read, and it won't disrupt your page design while the background

image is still loading.

Let's show how to use these two properties together:

div { background-image: url(background.gif); background-color: Black; }

The background color property is set in a familiar way, but the background image is

rather new. It uses url() to specify the address of the image. This is actually a standard

way to define external components of CSS, most often images, which will be used on the

page. Don't use quotation marks; just put the image location between parentheses. Your

image can be in a different folder – you would write url(my_folder/background.gif).

If the background image is smaller than the element it needs to fill, it will be repeated

so that the whole element is filled. That is the default behavior, but you can, of course,

change it with CSS. Let's start building a simple scenario – you want to have your logo

as the background image, but also want it displayed only in the top right part of the

page. You also want it fixed, as you want it to be displayed in the top right all the time,

even when user scrolls the page.

The first step is to make the background fixed, so it won't move when the user scrolls.

The background will seem as a separate layer of the page, completely detached from the

content. We need to set the background-attachment property to "fixed" (it's default

value is "scroll").

body { background-attachment: fixed; ... }

The second step is to position the background to start from a certain location on the

page. If you don't position it, it will start from the top left and fill the rest of the page.

But you can set its position using pixels (e.g. 15px), relative position (e.g. 10%) or use

descriptions like "bottom", "top", "left", "right" or "center". Let's position the background

to start from the top right part of the page using the background-position property.

body { background-position: right top; ... }

But we're still not done. When positioning the picture in the top right position, it will still

be repeated to fill the rest of the page, until it reaches bottom right part of the page. So,

the third step is to stop the background from repeating. We will use the property

background-repeat, which can have value "repeat-x" (repeats the background only in

horizontal direction), "repeat-y" (repeats the background only in vertical direction), "no-

repeat" (the background isn't repeated and it is only displayed once), or the default

value of "repeat".

body { background-repeat: no-repeat; ... }

Introduction to CSS

15

And that's it. Let's put it all together and create a CSS declaration that would put a fixed

and not repeating background image in the top right part of the page.

body { background-image: url(logo.gif); background-color: white;

background-attachment: fixed; background-position: right top; background-

repeat: no-repeat; }

And here is how that would look in a browser – our logo is positioned right where we

want it to be.

We've progressed very fast and you might have gotten all of these properties mixed up.

That's perfectly OK, because you can use a simple background property and put all

those values in it. Look at the previous example written only using the background

property.

body { background: white url(logo.gif) no-repeat fixed right top; }

This will save you from writing large blocks of code and will make your CSS much more

readable.

Although we've explained backgrounds using the BODY element, the logic is completely

the same for any other element, whether it is a DIV, a TABLE or any other type of

element.

Quiz 3

Question 3.1: How can you specify that the text of a DIV element should use font

Calibri, if it available, or Arial?

Answer 3.1: Specify multiple fonts separated with a comma.

div { font-family: Calibri, Arial; }

Introduction to CSS

16

Question 3.2: Can your background image be on a different server? How would you

write your CSS code then?

Answer 3.2: Yes, it can be. Just specify it's full URL using url().

body { background-image: url(http://www.otherserver.com/logo.gif) }

Question 3.3: How would you define a background image which would be displayed

filling only the top of the screen?

Answer 3.3: You need to set "repeat-x" value of the background-repeat property which

specifies that the background will only be repeated horizontally and then position the

image in the left top corner of the page.

body { background: url(logo.gif) repeat-x fixed left top; }

Borders and margins

Let's advance your knowledge of HTML elements. Every element is displayed in a specific

way, but there are several properties that might help you display them just the way you

want. First, let's take a look at the usual properties of HTML elements, for example a

DIV element.

Each DIV element has a content area in which all of its content, like text or images, is

displayed. A DIV element can also have a border, which can be of any color and any

thickness. Between its border and the content is an area defined by the padding – you

can define just how much space you need. If you set the padding to 0, the content will

be glued to the border, but if you set it to 5 pixels, the content will be 5 pixels inside of

the border.

Outside of the border is an area defined by the margin. It defines how much space must

be left between the element and its neighbors. If you set the margin of the DIV element

to 0, its neighbor element will be right next to the border of the DIV. But if you set it to

20 pixels, there will be a space of 20 pixels between the DIV and any of its neighbors.

Let's start with defining the borders of our elements through CSS. For that, you can use

border-width, border-color and border-style attributes. The width of the border can be

defined using a value and a unit (for example, "2px", "6pt", - the same way when

defining text size) or using a descriptive property, like "thin", "medium" or "thick". Color

is defined as any other color in CSS and HTML. The style of the border defines the line

Introduction to CSS

17

with which the border will be drawn. It can be "solid", "dotted", "groove", "ridge",

"outset", etc. Here's how you would define a normal black border which is 1 pixel wide.

div { border-style: solid; border-width: 1px; border-color: Black; }

Similar to when defining a background, you don't need to write all the properties

separately, you can use the border property to list all the values.

div { border: solid 1px black; }

Defining margins and padding for elements is a bit easier, as they don't have any

additional properties, just the length. So, if you want to specify a margin or padding, use

the margin or padding properties.

div { margin: 10px; padding: 5px; }

Here's one practical example. Let's say you're creating a page with lots of pictures, like

an album. You want all of the pictures to have a uniform look, a thin border, and you

also want to make sure that they aren't too close to each other. You could use the

following style:

img.album { margin: 10px; border: solid 1px black; }

As you don't want this style applied to all images on the page, you created a class

named "album" which can be applied only to IMG elements. Of course, don't forget to

apply the attribute class="album" to all IMG elements you want to have a black border

1 pixel wide and a margin 10 pixels wide (every image in the album will have a 10 pixel

space in every direction).

We've simplified everything a bit since we've only shown you how to apply margin,

border or padding to all sides of the element. But you have many more properties at

your disposal. You can specify the left, right, top and bottom border with the border-left,

border-right, border-top and border-bottom properties respectfully. You can even specify

the style, width and color of the border on each side with border-left-style, border-left-

width and border-left-color properties. This works with other sides too, like border-top-

color or border-right-style. This gives you much more flexibility – for example, you can

create a left border that is different from the right one.

Similar options are available to margin and padding properties. You can set left, top,

bottom and right margin widths with margin-left, margin-top, margin-bottom and

margin-right properties. And also the padding widths – use padding-left, padding-top,

padding-bottom and padding-right properties.

We'll mention two more useful CSS properties for defining width and height of an

element, the width and height properties. They are useful if you want to specify a strict

proportion of an element. For example, in HTML, when working with forms, you can only

specify the width of the INPUT element by the number of characters, which is pretty

inaccurate. Using CSS, you can easily define its width in pixels:

input { width: 150px; }

div { width: 300px; height: 450px; }

Scrollbars

Introduction to CSS

18

If you're working on a page to which design is rather important (for example, a band or

an artist Web site), you might want to control the looks of something that is outside of

the standard page area. With CSS you can change the colors of page scrollbar. Here are

the properties you can change:

As you see in this picture, you can use 8 different properties. Here's how a custom

scrollbar definition would look in CSS:

body

{

 scrollbar-3dlight-color: #FFD700;

 scrollbar-arrow-color: #FFFF00;

 scrollbar-base-color: #FF6347;

 scrollbar-darkshadow-color: #FFA500;

 scrollbar-face-color: #FF5522;

 scrollbar-highlight-color: #FF69B4;

 scrollbar-shadow-color: #FF00FF;

 scrollbar-track-color: #FFAA22;

}

We've created a custom scrollbar for the whole web page, using the BODY element

selector. But you can create a custom scrollbar for other elements, like a TEXTAREA

element. The previous example would result in the scrollbar shown in the following

picture.

Introduction to CSS

19

… And few more properties

We've covered all of the most common CSS properties, but there are still some that

need mentioning.

Within HTML documents, you can also have elements that won't immediately be

displayed to the user. The following properties will mostly be used within the style

attribute of HTML tag and you'll dynamically change them with a client-side script

written in JavaScript (more about this topic in the JavaScript guide).

The first property responsible for displaying an element is called display. The important

thing to remember is that all elements that are hidden using this property won't be

displayed on the page, and the page will be displayed as if they aren't even in the HTML

code. The second property used for displaying an element is called visibility, and it has a

different effect. Elements that are hidden using the visibility property won't be displayed

on the screen, but there will be a blank space left for them on the page. They will simply

be invisible, but their place on the page will be reserved and blank.

Introduction to CSS

20

Before we go on, let's explain one fact about HTML elements. They can, roughly, be

divided into three groups: block elements, inline elements and list elements. Block

elements (like DIV) take the whole available width and nothing can stand horizontally

by them. Inline elements (like SPAN, IMG or A) are displayed in the row with all other

elements, that can be to their left or to their right. List elements (like LI) are special, as

they are displayed as a part of a list.

This comes into play when working with the display property – you can set its value to

"none" (element isn't displayed), "block" (element is displayed, suitable for block

elements) or "inline" (element is displayed, suitable for inline elements). So if you want

to completely hide a block element, change the display property value from "block" to

“none”, and if you want to hide an inline element, change the value from "inline" to

“none”. Mixing up "inline" and "block" might lead to errors displaying elements on the

page.

<div style="display:none;">This isn't displayed on the page.</div>

<div style="display:block;">This is displayed on the page.</div>

When working with the visibility property, things are a bit simpler. You can change its

value between "visible" and "hidden".

<div style="visibility: hidden;">This text is invisible.</div>

But remember, even if the text is invisible on the page, it is still in the HTML source

code. So don't hide any important or sensitive information this way, as it can be

accessed when viewing the source code.

Introduction to CSS

21

Before the end of this lesson, we'll introduce you to one final CSS property that you

might use. If you want to change the mouse cursor that is displayed when moving over

an element, you can do it using the cursor property. As before, we won't list all the

available values as Visual Web Developer Express can provide them for you, but we will

name a few of the most interesting. For example, if you want your cursor to be a hand

(like when hovering over links), use the "pointer" value. It can also be an hourglass if

you use the "wait" value, or a crosshair if you use the "crosshair" value.

<div style="cursor: crosshair;">Aim here!</div>

Quiz 4

Question 4.1: How would you define the style of a DIV element that has a border, and

a space of 10 pixels to its left and right direction?

Answer 4.1: Use the border, margin-left and margin-right properties.

#myDiv { border: solid 1px black; margin-left: 10px; margin-right: 10px; }

Question 4.2: How would you create a textbox 150 pixels wide in which text would be

written using Verdana font?

Answer 4.2: We can write this CSS definition within HTML code. Just use width and

font-family properties.

<input type="text" style="width: 150px; font-family: Verdana;"

name="myText" />

Question 4.3: What is the most secure way to hide HTML content from visitors – use

display, visibility or something else?

Introduction to CSS

22

Answer 4.3: Something else – completely remove this HTML content from the Web

page, as everything, even when hidden using CSS, is available when viewing HTML

source code (in Internet Explorer go to View – Source).

Conclusion

As you've seen in this guide, although rather simple and straightforward, CSS can add

great design elements to your Web pages, and can increase the design possibilities of

simple HTML. If you are interested in CSS, don't stop here – we've only shown you some

basic CSS capabilities, and there is a lot more to be discovered. Start with MSDN

documentation and tutorials for CSS,

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/css/css_node_entr

y.asp, and soon you'll be on your way to becoming a CSS expert.

Author bio: Luka Abrus works for Microsoft Croatia as Technology Specialist. Prior to

coming to Microsoft, Luka has worked as Web developer with several companies and as

an author for Croatian IT magazines writing over hundred articles. He has written three

books on Web development and Microsoft .NET. In his spare time, Luka is active in

sports and playing piano.

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/css/css_node_entry.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/css/css_node_entry.asp

